[LeetCode] 108. Convert Sorted Array to Binary Search Tree
Contents
Convert Sorted Array to Binary Search Tree
Link to original Problem on LeetCode
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
Company: Amazon, VMWare
Solution (Using Recursion):
Time Complexity: Space Complexity:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def sortedArrayToBST(self, nums):
"""
:type nums: List[int]
:rtype: TreeNode
"""
# The idea is in each loop tale the middle element
# Make an object of TreeNode with value as the middle element
# Now all the values left to this middle element will be part of the left sub tree
# Likewise all the values right to this middle element will be part of right sub tree
# We have to recursively call this method and assigne the middle element of all the value to left of current middle element to the left node
# Same for the right node
if not nums:
return None
mid = len(nums) // 2
root = TreeNode(nums[mid])
root.left = self.sortedArrayToBST(nums[:mid])
root.right = self.sortedArrayToBST(nums[mid + 1:])
return root
Solution (Using Recursion - helper method):
Time Complexity: Space Complexity:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
class Solution(object):
def sortedArrayToBST(self, nums):
"""
:type nums: List[int]
:rtype: TreeNode
"""
# Here concept is same but we are using a helper method
if not nums:
return None
return self.helper(nums, 0, len(nums))
def helper(self, nums, left, right):
if left >= right:
return None
mid = (left + right) // 2
root = TreeNode(nums[mid])
root.left = self.helper(nums, left, mid)
root.right = self.helper(nums, mid + 1, right)
return root
<hr><br />